ExxonMobil vs The State: How Governments Can Lower Corporate CO2 Emissions

First published in UCD College Tribune

Updated 15/10/2019

A report released in 2017 found that over half of all global emissions since 1988 have been produced by just 25 companies. When you take into account the 100 most environmentally damaging companies, known as the ‘Carbon Majors’, that figure rises to over 70%. In October of 2019 (during rebellion week), the Guardian reported that just 20 companies have been responsible for 35% of all emissions since 1965; the point at which experts say that both government and industry were fully aware of the dangers of fossil fuels.

Even so, we are constantly told that individual actions like using canvas bags and taking the bus will be enough to avoid the catastrophic effects of climate change. The truth is that the onus is on the major greenhouse gas emitters like Exxon Mobil and Shell Oil to simply stop extracting and distributing fossil fuels. Unfortunately, the pressures of the competitive market mean that they are not going to do this without a push.

As things stand, it makes more financial sense to use fossil fuels than renewable alternatives. However, there are many ways that governments can curtail the emissions of Carbon Majors through financial and legal incentives. A fundamental of the modern nation state is that the legislator should tax practices which they aim to discourage in society. This is why smoking is so expensive. Governments realised that by taxing cigarettes at an extremely high rate, they could better public health and make some serious dough while they were at it.

By raising the price of smokes, governments can gradually decrease the number of smokers which in turn decreases the amount they have to spend on the treatment of diseases like lung cancer and emphysema. In theory, this increase in revenue can be put towards things like medical services and anti-smoking campaigns. This essentially means that governments can shift the costs that smoking imposes upon society onto those who actually smoke.

Similarly, governments can tax the use of dirty fuels which emit CO2 and use the extra cash to invest in renewable energy research. Some form of ‘carbon tax’ has already been introduced in 46 countries, including Ireland, Canada and Australia. Carbon tax means that fuels which result in higher carbon dioxide emissions are taxed at a higher rate, a policy which is all ‘stick’ and no ‘carrot’.

By taxing carbon, governments can cut into the profits of companies who would otherwise be making a killing on fossil fuels. The hope is that Carbon Majors will then be incentivised to move toward renewable energies like solar and wind power. While a higher carbon tax would mean an increase in the prices of fuels like petrol, coal and gas for the consumer, it would also mean that clean energy sources could become more competitive.

The other side of the coin is renewable energy subsidies; the ‘carrot’ to the ‘stick’ of carbon tax. The government invests money in order to lessen the costs of energy from sustainable sources. The top 6 countries that subsidize renewables spend a combined total of 40 billion dollars a year. Unfortunately, we spend more than 5 trillion a year globally to subsidize fossil fuels. That’s 6.5% of the global GDP.

Subsidies can go a long way towards decreasing the financial loss Carbon Majors and consumers suffer when switching to cleaner sources of energy. By both taxing fossil fuels and subsiding renewables, governments can gradually make it so that renewables are the sounder investment. Since financial considerations are the only considerations corporations are likely to take on board, the use of both of these policies could go a long way towards reducing the footprint of Carbon Majors.

While straight-up carbon taxes are gaining popularity worldwide, there is a similar but more widely used group of policies called carbon ‘cap and trade’ schemes. These schemes involve setting a limit on how much CO2 can be produced in total then either giving or auctioning ‘credits’ to companies which equal that limit. If companies exceed their allowance, they are liable to incur very serious fines or even legal action. One way that companies can exceed their allowance is by buying (or trading) credits from other companies who are using fewer fossil fuels than they are allowed.

With a carbon tax, companies can just take the hit and produce as much CO2 as they can afford. The advantage of cap and trade schemes is that while Carbon Majors still take a huge financial hit by using fossil fuels, there is a fixed upper limit on how much they can produce. Another advantage is that companies which can reduce emissions cheaply can then sell their remaining credits to companies which are struggling to meet their allowances and make a profit. In this sense, cap and trade schemes combine the carrot and the stick into one efficient bundle.

The main criticism of cap and trade schemes is that it allows Carbon Majors to carry on polluting as they’ve always done since it is still cheaper to pay for extra credits than to switch to 100% renewable energy sources. However, smart legislation such as lowering the upper limit on carbon emissions and thus raising the price of credits at auction should be enough to make these schemes workable. The main obstacle to these amendments, as with all climate-protecting plans, is that the companies who are profiting from the destruction of the environment can use their astronomical profits to lobby for the weakening or outright removal of cap and trade schemes in the countries in which they operate.

Perhaps the main issue with putting a price on carbon is that the costs will be incurred not by major polluters but rather by the poorest people in society. When governments make it more expensive to sell fossil fuels, fossil fuel sellers make it more expensive to buy them. This kind of ‘climate austerity’ means that the plumber who needs to drive their van all day for work takes a huge financial hit while the bottom lines of the companies who sold the plumber the petrol remain despicably intact.

A possible response to this line of reasoning is that the consequences of leaving climate change unchecked will affect working class people far more severely than an increase in tax. The CEO of Exxon Mobil will not suffer from the food or water shortages brought on by climate change. Truckloads of water will be delivered to their mansion to hydrate their petunias while the working class people die of dehydration. The question becomes whether we are willing to die for our principles, deeply held as they might be.

Another consideration is that only about 10% of the emissions from carbon majors come from the extraction and transport of the fuels. The remaining 90% comes from ordinary people like you and me burning those fuels to power our cars and heat our homes. Given the catastrophic consequences of climate change, I have to say that any government action which reduces energy consumption is positive in my books. Yes, we need system change like building renewable energy infrastructure and getting rid of fossil fuel subsidies, but system change takes time. In the meantime, we must all do our best to reduce our individual consumption.

A more useful response to the problem of climate austerity is that revenue from the tax should be given as rebates to people who cannot afford to pay. Tax the carbon majors and they will raise their prices. Those who can afford to pay extra for fuel do (i.e. those above a certain income threshold) while those who cannot afford it are given rebates which could more than cover the extra cost. This would mean incurring all the benefits of carbon pricing described above without hurting the plumber who is simply trying to make a living.

It is imperative that we do everything we can to curb the power of Carbon Majors to continue their crusade against the environment. Carbon taxes and cap and trade schemes are just two ways in which we can do this and must happen in tandem with every other tactic we can think of. In an ideal world, we would simply make it illegal to extract and burn fossil fuels. Unfortunately, no government is willing to take such drastic measures against entities that in many cases have more money, and thus more power, than the governments themselves.

The CEOs of Carbon Majors are not necessarily evil people. In their eyes, the livelihoods of their many employees rests on their shoulders. What we need to convince such people is that while workers can probably find new jobs, it is very nearly too late to reverse the catastrophic effects of global warming. The question they must ask themselves is whether they would rather be responsible for a few lay-offs on one hand, or the deaths of hundreds of millions of people on the other. The fact is that those are the only options.

The New Frontier: Plastic Pollution in the Ocean

Every minute, the equivalent of a truckload of plastic enters the sea. Since 2004, humans have produced more plastic than we did in the previous 50 years combined. As the global population rises, our need for cheap and sturdy materials rises with it. The problem with plastics is that they are too sturdy. Every piece of plastic ever produced still exists somewhere in the world. Once the plastic has finally disintegrated, that is by no means the end of the problem. Plastics in the ocean break down into tiny particles known as microplastics. Such particles are found throughout marine ecosystems; from the stomachs of fish, to the stomachs of the seabirds who eat them.

Microplastics are not only dangerous, but also extremely difficult to clean up since they are spread out by currents all across the sea. In order to be classified as a microplastic, a piece of plastic debris must be roughly the size of your little fingernail or smaller. There are over 320 million cubic miles of water in the world’s oceans. For a sense of scale, you could fit roughly 320 million cars into a single cubic mile. Scientists have estimated that there are up to 50 trillion pieces of microplastics in the oceans. Given these figures, to say that removing microplastics from the ocean is no easy task would be the understatement of the century.

The reason that high levels of plastic in the ocean are problematic is that plastics have serious detrimental effects on the health of almost all ocean life. Over 800 species of animals have so far been shown to be negatively affected by plastic pollution. Considering that number was closer to 600 in 2012, it is safe to assume that the figure will continue to rise dramatically in the coming years. What’s more, almost 20% of the animals shown to be affected by plastic pollution are already classified as endangered due to human activity. There are two major ways in which plastics can harm or kill marine life. First, they can be ingested. When marine animals ingest plastic, the pieces can remain in their stomachs for the rest of their lives. As the amount of plastic increases, the space remaining in the stomach decreases, causing the animal to starve. In addition to this, most plastics are toxic to animal life, causing conditions like cancer and birth defects. Second, marine animals can become entangled in the plastic. If this happens at a young age, the plastic can restrict the growth of the animal, causing them to become severely deformed. This is seen most often in sea turtles. The worst offenders when it comes to entanglement are pieces of discarded fishing gear.

The phenomenon of marine life being caught by gear that has been abandoned by fishermen is known as ‘ghost fishing‘. Nets, hooks, lines, and cages continue to catch and kill fish long after the fishermen have stopped using them. Roughly 30% of all fish that are caught by humans are caught in ghost fishing gear. When you consider the sheer scale of human fishing, this percentage is astonishingly high. Leaving plastic fishing gear in the ocean, plastic or otherwise, is both short-sighted and despicable. Fishing gear is specially designed to kill as much marine life as it can. When it is under the control of a fisherman, protected marine life like whales and sea turtles can be avoided or released. Even so, fishing of any sort is devastating to endangered species. When the gear is abandoned, however, there is no targeting of species, leading to indiscriminate destruction of marine habitats.

There have been a lot of stories in the news recently about how companies like McDonald’s and Starbucks are ditching plastic straws. While this is a step in the right direction, straws only account for roughly 1% of the plastic debris in the ocean. In order to make a real difference, the companies would have to stop using plastic straws, containers, bags, cups, lids and everything else. This is a perfect example of what’s known as corporate ‘greenwashing’. If the public perception of a company is that they are trying their best to reduce the environmental damage they are causing, less people will boycott the company’s products, leading to higher revenue. Because of this, companies make the calculated decision to sacrifice a small portion of their profits in order to further their public personas as stewards of the environment. This is not to say that small steps forward like those taken by McDonald’s and the like are not helpful. Carlsberg have recently announced that they are ditching the plastic rings connecting cans in favour of glue dots. This is a positive development, since these connector rings have been shown to strangle and stunt the development of marine life and seabirds.

Plastic is not distributed evenly throughout the ocean. There are 5 major places, known as gyres, where currents have forced plastics to accumulate into huge expanses of debris. The largest of these gyres is called the great pacific garbage patch (GPGP) and contains about 2 trillion pieces of plastic. That’s 250 pieces of plastic for every human on earth in just one place. The GPGP is around the size of Texas and weighs about the same as 500 jumbo jets. The accumulation of plastic in gyres like the GPGP makes it somewhat easier to clean up oceanic plastic, but it is still a monumental challenge.

When he was just 17, Dutch aerospace engineering student Boyan Slat devised a huge U-shaped machine to clean up the GPGP that he believes could clear 50% of the plastic in just 5 years. The device uses ocean currents to move with the plastic, but since it is largely above the surface, it moves faster than the plastic, gathering it as it goes. It was deployed in the gyre in September of last year but was immediately faced with a slew of setbacks. The device was not travelling fast enough, allowing some of the plastic to escape, then a 60-foot section of the machine broke off, meaning that it had to be brought back to shore for repairs. Another issue with the device is that it cannot collect microplastics. However, it is important to gather up as many of the large pieces of plastic as we can now, since they will become microplastics in the future which will be much more difficult to clean up. We are in full damage control mode.

Despite valiant attempts to reduce our plastic consumption and remove the plastic we have already dumped in the ocean, it is highly unlikely that this problem will be solved any time soon. If anything, it will get much much worse. Humans have a history of showing up at a new location and decimating the native wildlife populations. When we first arrived in Australia, huge animals roamed the land. These included a 2-and-a-half-ton wombat, a flightless bird twice the size of an ostrich, and a predatory marsupial the size of a tiger. Within a few thousand years of humans showing up, 23 of the 24 animals that weighed over 50 kilograms had become extinct. We have spread all over the planet now, leaving only a few havens in which animals may thrive. The new frontier of animal extinction is marine life. Plastic pollution, overfishing and ghost fishing have devastated marine life and seabirds already, and the rate of destruction is only going to increase. All we can hope for is that people wake up to the genocide we are committing under the waves in time to save at least some of the majestic creatures who call the sea their home.