The Lives of Otters

If you walk at night along an open marsh or riverbank, you may well come across an incredible animal. This mammal with two arms and two legs is agile enough to chase and catch a fish underwater and smart enough to use tools. There are as many as 13 distinct species of otter, but I will be focusing on two: the sea otter and the Eurasian river otter. Sea otters recently captured the hearts of millions when they were featured on David Attenborough’s Our Planet. In this piece, I will be looking at what makes otters so special, and what makes them so damn endearing.

While humans eat about 3% of our body weight in food each day, Eurasian otters can stuff in a whopping 15 to 20%. That figure goes up to 25 to 30% for sea otters! That is roughly the equivalent of an average human eating 3 bowling balls every day. Sea otters eat so much because they have an extremely fast metabolism, which they need to keep warm in the cold ocean waters. That is also the reason why sea otters have the thickest fur of any animal, with 850,000 to 1,000,000 hairs per square inch. Pleasingly, that is around 420 times thicker than human hair.

To quote Attenborough, “such a luxuriant coat requires a great deal of attention”. Sea otters must thus spend several hours a day grooming themselves to remove salt crystals and add natural oils. They also use this time to work air bubbles into their coat to provide an extra layer of insulation. This trapped air provides 4 times more insulation than the same thickness of blubber. Take that seals! Their thick, oily fur means that an otter’s skin never gets wet.

Around 90% of all the sea otters in the world can be found off the coast of Alaska. The way they eat is truly amazing. Sea otters dive down to collect crabs, sea urchins and other hard-shelled invertebrates. They also collect a rock, which they store under their armpit. The otter returns to the surface and balances the rock on their belly. They then use the rock as a tool to break open the shells and get to the sweet meat within.

Believe it or not, sea otters are also responsible for sequestering carbon, and are thus an ally in the fight against climate change. Sea otters are a ‘keystone’ species, meaning that they have a disproportionately large effect on the ecosystem when compared to other species. One effect of removing sea otters from their ecosystem is that sea urchin populations explode, devouring the carbon-storing kelp forests which the otters call home. In this way, sea otters are indirectly responsible for sequestering between 4.4 and 8.7 million tonnes of carbon each year. In other words, they sequester the same amount of carbon that would be released from deforesting an area between the size of Disney World and Washington DC every year.

Adult sea otters can grow up to nearly 5 feet! Bet you didn’t see that coming. That’s about 4 bowling pins or a little over 1 Danny DeVito. That makes sea otters the largest of all ‘mustelids’: the class of animals which includes weasels, ferrets and badgers. Sea otters are also the only mustelids which don’t produce a strong-smelling secretion from their anal glands to attract mates and mark territory. In order to stop themselves floating apart, sea otters wrap themselves in seaweed to form what is called a ‘raft’. Sea otters have been observed floating in groups of up to 1,000 individuals.

Beginning in around 1741, Russian hunters brought sea otter populations to their knees in order to sell their warm, dense fur. In the process, they completely exterminated the Stellar’s Sea Cow, a close relative of the manatee which measured 9 meters in length. That’s about half a bowling lane or a little over 6 Danny DeVitos in case you were wondering. Sea otter populations rebounded from just 50 individuals in 1914 to around 3,000 animals today. Some populations, however, are once again in decline as a result of oil pollution and habitat loss. They are currently listed as endangered on the IUCN red list.

Eurasian otters mark their territory by depositing faeces on boulders, bridge-footings and grass tussocks. These blobs of dung, known as ‘spraints’ have been used in recent years to track otter populations and find out what they eat. That is because it is very hard to observe them in the wild, since they are mainly nocturnal and largely hunt underwater. Eurasian otters are not picky. While they mainly feed on fish, the Eurasian otter has also been found to eat crayfish, frogs, insects, and even animals like ducks and rabbits.

Despite being solitary creatures, these otters have a pretty complex social life. Males (called ‘dogs’) have a rigid territory which they defend from other males, while female territories overlap. It is thought that females (called ‘bitches’) share a group range, but that each individual has a core area where they spend more than half their time. Essentially the only reason males and females meet is to mate. The male contributes nothing but sperm to the raising of young, despite cubs taking up to 13 months to become self-sufficient hunters. The nest in which the mother raises the young is known as a ‘holt’.

Otter populations have declined significantly across Europe, with the species recently becoming extinct in the Netherlands. Ireland is left as one of the last strongholds for the Eurasian Otter. Their decline was linked to the use of organochlorine pesticides, highly toxic chemicals which have made their way into the aquatic food chain. Organochlorine pesticides include DDT, the chemical at the heart of Rachel Carson’s seminal 1962 work Silent Spring. The fight against organochlorine pesticides was the catalyst for the birth of the environmentalist movement, and it is easy to see why.

Organochlorine pesticides are a form of chlorinated hydrocarbon, a group which also includes Polychlorinated Biphenyls (PCBs), an industrial chemical which has also been found in the spraints of Irish otters. More PCBs are found in the spraints of Irish otters the further east you go, since there is more industrial activity in the area surrounding the capital. Sadly, significant numbers of Irish otters are also killed on the roads, and habitat loss poses another grave threat.

While some residue from organochlorine pesticides can still be found in the spraints of Irish otters, levels are generally low. Some populations are starting to recover in the UK thanks to valiant conservation attempts, but we are very much not off the hook yet. If we are to save these adorable marine mammals, we must continue to designate riverbanks, marshes and coastlines around the world as special areas of conservation and set about the task of rewilding them. Only then may the otter’s prey return, and with it, the security of their species.

For Peat’s Sake: Bogs, Bord na Móna and the Climate

My skull hibernated
in the wet nest of my hair.

Which they robbed.
I was barbered
and stripped
by a turfcutter’s spade

who veiled me again
and packed coomb softly
between the stone jambs
at my head and my feet.

-Seamus Heaney

Abbeyleix bog in Co. Laois is a rare example of a bog that has not been utterly destroyed by industrial peat extraction. Many of the peatlands I saw from my window on the bus down here were not so lucky. The barren and lifeless landscape of bogs that have been stripped bare is a common sight in the Irish midlands, and it is becoming more common every day. Abbeyleix very nearly met the same fate back in 2000. If it were not for the dedication and quick thinking of the community, the thousands of species in the bog would be homeless and hundreds of thousands of tonnes more carbon would be in the atmosphere instead of in the ground where it belongs. 

Bogs and Irish culture have been intimately linked for centuries, cropping up in everything from our traditional songs to the work of our most beloved poets. They have provided us with energy, clean water, jobs and a home for our wildlife. Globally, degraded peatlands account for a quarter of all carbon emissions from the land-use sector despite covering only 3% of the land. They also contain 30% of the world’s soil carbon; that’s twice as much carbon as is stored in all the world’s forests. It is estimated that more than 80% of Irish peatlands have been damaged in some way.

Peat forms because the water-logged and acidic conditions of a bog significantly slow the decomposition of bog mosses, also called sphagnum, causing a build-up of organic matter. Emissions from peatlands don’t just come from the burning of the peat; they also come from drainage. When the level of water in a bog (known as the water table) is reduced, this exposes more of the peat to the air. In this dry, oxygen-rich environment, the peat decomposes, releasing all that carbon back into the atmosphere.

Despite owning only 7% of Irish peatlands, the organisation primarily responsible for the industrial extraction of Irish peat is Bord na Móna, a semi-state company which was set up by the government in 1934 under the name ‘the Turf Development Board’. Since the inception of Bord na Móna proper in 1946, the company has been responsible for the development of 80,000 hectares of Irish bogs. Back in 2016, Bord na Móna rebranded themselves with the slogan ‘Naturally Driven’ and tried to position themselves as environmental stewards. The journalist John Gibbons called this campaign “profoundly, irredeemably dishonest” and “an exercise in cynicism”. He also quoted An Taisce as saying “We suggest they drop their new ‘Naturally Driven’ slogan and replace it with the phrase ‘Profit Driven’. Then Bord na Móna would at least be able to sell its business plan with a straight face”.

Abbeyleix bog had been owned by the De Vesci family since the early 1700s. In 1987, Tom De Vesci, who had previously attempted to have the bog designated as a heritage site, was coerced by Bord na Móna into selling the bog. “I was approached many times by Bord na Móna to sell it after my father died in 1983 and I always refused” Tom said in an interview. “But eventually I was informed that Bord na Móna would be taking ownership via a compulsory purchase order at a somewhat lower level of compensation than I would get if I sold it ‘voluntarily’ a few weeks earlier”. In 1989, Bord na Móna cut 66km of drains into the bog in preparation for future peat harvesting.

On Thursday, 20th of July 2000, Chris Uys, a member of the Heritage Company and now development officer for the Community Wetlands Forum, met with Jimmy Dooley of Bord na Móna to discuss plans for a walkway through the bog and to inform Jimmy of concerns regarding its development. The following day, locals noticed unfamiliar pieces of machinery on the bog, which had been delivered to the site by Bord na Móna overnight. Chris Uys raised the alarm in the community that development of the bog was about to begin. That Sunday, local resident Gary O’Keeffe parked a crane in the entrance to the bog under the guise that it had broken down during a bird-watching session in order to keep the rest of the machines out of the bog. By Monday morning, at least 50 people had gathered at the entrance to protest the development, with numbers swelling to around 100 by lunchtime.

After much pressure from the community, Bord na Móna finally agreed to carry out an Environmental Impact Assessment (EIA) in April of 2001. They found that the Abbeyleix site was of “little or no conservation value”, an assessment which both the Abbeyleix community and the Irish Peatlands Conservation Council (IPCC) considered “incomplete and inaccurate”. An ecologist by the name of Doug McMillan was invited to carry out an independent assessment of the bog. Having only surveyed 20% of the land, Doug had already found over 500 species, and could reasonably conclude that the bog was home to thousands of species, including a butterfly which was protected by the EU. If Bord na Móna really had carried out an EIA, they had either done a poor job or they had lied about the results.

In 2002, An Bord Pleanála found that Abbeyleix bog was not exempted from the requirement for planning permission. This was the first time in Irish history that a peat development went through the planning permission process. Bord na Móna, in true form, took high court action against both the Laois County Council and An Bord Pleanála. In 2008, an ecologist by the name of Jim Ryan carried out another survey, finding that only 1% of the raised bog was still intact and forming peat. I am stunned when Chris tells me that, like in Abbeyleix, only 1% of active raised bog in the country remains. In other words, we have degraded 99% of carbon-rich raised bog nationwide through drainage and peat extraction. In April of 2009, more than 20 years after they were cut, work began to block the drains in Abbeyleix. In April of 2012, the Abbeyleix community signed a lease agreement which meant that the bog would be in their control for the next 50 years, provided that it was primarily used for habitat restoration. David had beaten Goliath.

I met with Chris Uys in the lobby of the picturesque ‘Abbeyleix Manor Hotel’ on the outskirts of the bog. He has brought with him a textbook on peatlands and a folder packed to the brim with documents. When I ask him why peatlands are so important for biodiversity, he tells me that “the interesting thing about the biodiversity in peatlands is that the combination of plants and… the way they interact has a wider role to play than just purely the biodiversity that is there because it helps to retain water content, it has to do with carbon sequestration, and it supports other ecosystems”. He tells me that bogs are very important for breeding birds and that they link different ecosystems together like a natural corridor.

A walk through Abbeyleix bog feels like a walk through the history of this country. There is a calm here that soothes your aching bones like a hot bath. This is what is known rather robotically as a ‘cultural service’; one of many ‘ecosystem services’ provided by bogs like Abbeyleix. These somewhat stomach-churning terms are used by some environmentalists as an attempt to reframe the ecological crisis we have caused in the parlance of capitalism and thus convince business and industry to act. Gazing out over the endless beauty of this ancient landscape, I can’t help but think that it is downright insane to try and put a price on something that existed for so very long before our self-centred species ever dreamed up the concept of money.

Back in 1997, peat fires forced both Singapore and Kuala Lumpur to close their airports for several days. The peat in question was burning over 1,000km away in Indonesia. Scientists have estimated that the CO2 released during this one fire was equivalent to 13-40% of the mean annual global emissions from fossil fuels. The carbon is not the only issue; the vast quantities of smoke released by the fire had serious effects on health, with studies showing decreased lung function in children who were present during the event. According to a study in Archives of Environmental Health, 527 people died in 2 months as a result of the smoke, with 58,000 cases of bronchitis and 1 and a half million cases of acute respiratory infection reported.  Fires like this have happened periodically over the last few decades, with one 2010 event in Russia leading to carbon monoxide levels in the capital that were 6 times the maximum acceptable level.

To the Irish, this all may seem like a distant threat, but were the Wicklow bogs to catch fire, the prevailing wind would carry all that lethal smoke right into the heart of Dublin. John Reilly, the head of the renewable energy branch of Bord na Mona, told me in an interview that “the biggest risk of wildfires is not posed by active peat production areas on drained peatlands, but rather the risk is high on virgin peatlands which are generally covered in vegetation such as gorse and heather”. He said that the major concern when it comes to fires was actually stockpiles of cut peat.

DCU-based peatlands expert John Connolly tells a slightly different story. “In one way he is right that the risk of fire (i.e. fire starting) on a drained industrial peatland may be less if all vegetation is removed. However, a lightning strike could start a fire and in that case drained peatlands are much more vulnerable than virgin (i.e. wet) peatlands”. Dr Connolly sent me a link to a 2016 study in ‘Nature’ which states that “the high burn severity of drained tropical/temperate peatland fires suggests that large-scale peatland drainage and mining in northern peatlands over the last century has also likely made managed northern peatlands more vulnerable to wildfire than natural (undrained) peatlands”. While there is an element of truth in what John Reilly told me, then, it seems that it was not the whole truth.

In 2006, an area of dried and cut peat the same size as Abbeyleix bog caught fire in the Irish midlands, leading to the evacuation of several Longford residents. While it was the stockpiles that caught fire rather than a bog itself, the incident shows how damaging peat fires can be. Smoke from the fire travelled 10 miles north. One Rooskey resident who had suffered from respiratory problems in the past was quoted in the Irish Times as saying “at the moment I am closing my windows and hope that will be enough”. A 2002 study of the Indonesian haze disaster, however, suggests that staying indoors only gets you so far in a situation like this.

They found that indoor concentrations of particulate matter were about half of what they were outside. That was a form of particulate matter known as PM10 because the individual particles are 10 micrometers or smaller in diameter. They could not find any difference, however, in the concentrations of fine particulate matter, or PM2.5, which are particles 2.5 micrometers or less. The researchers said that “perhaps the size of particulates was so small as to travel and intrude into any space; the concentration of pollutants was extremely high, and the indoor environments of buildings in Indonesia were rarely exempt from these pollutants”.

When asked about Mr Reilly’s claim that the presence of vegetation increases the risk of wildfires, Chris Uys replies that “from that point of view yes, that is so. But if you are talking degraded peatlands, degraded means that you have dried. For me, there is a higher risk… when the peat below the surface is dry and there is an ignition of anything above, it starts to smoulder underground as well”. Chris tells me that Abbeyleix has suffered from this very problem; “we had a fire at one stage, and you could just see smoke. On nearer investigation it was actually starting to simmer underground. It just keeps going”. While vegetation fires on the surface are manageable, the dried peat below can keep burning for a very long time and release a lot of carbon before it is extinguished.

Thankfully, Bord na Móna have been trying to get out of the peat business for over a decade, with over half of their revenue coming from non-peat-related activities in 2019. John Reilly, who has been doing excellent work building renewable energy infrastructure with the company, tells me that “Bord na Móna developed the first commercial wind farm in Ireland back in 1992, on a joint venture basis with the ESB, so we have some considerable experience in the sector”. They also announced last year that they were closing 17 of their active bogs, with the remaining 45 bogs to be closed within 7 years. However, some have said that this amounts to greenwashing, since the planned closures are of bogs that have been exhausted and are no longer profitable. As UCD peatlands expert Dr Florence Renou-Wilson put it in an interview with the Guardian, ““It’s a bit of a smokescreen. It’s all revenue-driven… they’re are all done and dusted”.

Bord na Móna is not the only company extracting Irish peat, though it is the largest. A company called Harte Peat has come under fire recently for carrying out large-scale peat extraction without a license in the Derrycrave bog in Westmeath. Photos released last year by ‘Friends of the Irish Environment’ showed that Harte had been cutting the peat right down to the mineral layer below, leaving almost no possibility of recovery. Peat that had formed at a rate of about 1 millimetre a year until it was several meters thick was stripped down to the bone in the geological blink of an eye, depriving animals of their homes and future humans of their right to security. This tragedy has played out countless times across the country over generations, leaving us with little more than a silhouette of the beautiful and important landscapes which once dominated the Irish midlands.

The degradation of Ireland’s peatlands doesn’t just threaten our health, it also threatens our wallets. New regulations require that we start reporting the emissions from our peatlands to the EU from 2021. Ireland is already facing hundreds of millions of euro in fines for failing to meet our emissions targets and this will bring us further off target. Chris tells me that “We were fined 150 million for this already… and we’re gonna be fined again until these people stop… Bord na Móna don’t get fined. It’s the government that gets fined. They merrily go on. They can go on for another 30 years if the government allow them. But we get that fine”.

When asked to what extent Ireland will be able to cope with these changes to EU law, Dr Connolly tells me that “the government and the EPA have made some investments in funding research and research infrastructure over the past few years. These investments will allow scientists to provide some of the detail that is required in the legislation, however much more investment is needed in research, infrastructure and rewetting/restoration as peatlands in Ireland are severely degraded and emissions are unknown in many areas”. But does this mean more fines for the Irish government? “It depends. If peatland emissions can be reduced to zero by the start of the 2026 reporting period, then no. However, current emissions are estimated to be about 11 million tonnes of CO2 … The reduction of these emissions to zero over the next six years will be very challenging.”

I ask Chris if Abbeyleix bog became a net source of emissions following the drainage and, if so, if it is back to being a net sink. “Possibly we are not a net sink yet… the higher the water level the less carbon emissions,” he tells me. “Then it gets to a point where it changes and it starts to give out methane emissions. There is a sweet spot where you have the least emissions. The other problem with degraded peatlands is that if you don’t have vegetation formation, (sphagnum), then it does not negate the methane”. The blocking of the drains has not been in vain, however. Whereas only 1% of the active raised bog remained in 2009, Chris reckons that as much as 10-15% has recovered in the intervening decade.

It takes time for peatlands to regenerate; all the more reason to block as many drains as we can as soon as we can. The light is beginning to fade from the grey clouds overhead as I slip and slide across the wet wooden walkways. The first few drops of rain begin to fall once more on the mounds and ditches of Abbeyleix. This beautiful landscape serves as both a cautionary tale and a beacon of hope. It showcases the terrible consequences of degrading our bogs, but is also a reminder that with elbow-grease, dedication and time we can undo some of the wrongs we have inflicted on the natural world.

Lawn of the Dead: How Cutting your Grass Affects Wildlife

Why do we cut our grass? The short answer is that we think it makes our gardens look neat and respectable. What would the neighbours think if our grass was long and full of weeds? What this kind of thinking fails to consider is the massive toll that lawn mowers have on local wildlife. All ecosystems are fragile and vulnerable to devastating chain reactions. By reducing the diversity of the plants on your lawn, you greatly reduce the hospitability of that environment for insects like bees, beetles and butterflies. This, in turn, has an effect on the food supply available to birds and small mammals. Some animals like mice and hedgehogs are often killed directly by the blades of mowers. On top of all this, most of us cut the grass with either petrol-powered or electric mowers, both of which hasten and intensify climate change, the greatest threat currently facing people and animals alike.

Humans have an obsession with shaping and controlling the world around us. Vast tracts of land are occupied either by our urban environments, crops or livestock. In the suburbs of our cities lie hundreds of millions of houses, with hundreds of millions of gardens. The reason gardens are so ubiquitous is that we psychologically require some part of our artificial environment to at least resemble nature. That is also why the paintings we hang on our walls often depict natural landscapes. While grass that is cut every week or two resembles nature, it is by no means natural. The hormones which suppress horizontal growth are in the tips of each blade of grass, which means that frequent cutting eventually creates a dense carpet which is impenetrable to anything but the grass.

To a bee, the difference between a well-cut lawn and a natural meadow is like the difference between a desert and a buffet. Global insect populations have been crippled in recent years by a combination of pesticides, herbicides, habitat loss and overactive lawnmowers. A 2017 study found that the number of flying insects in Germany has dropped by more than 75% in less than 30 years. Though you may think they’re creepy and unnecessary, insects serve a vital role in almost all ecosystems. Just like any other chain, if you break one link in a food chain, the whole thing becomes useless. The issue is not just the food supply of other animals, but also that some insects serve a critical function as pollinators. Three quarters of the world’s flowering plants and a third of all food crops depend on pollinators for their survival.  

Plants really are the bedrock of all ecosystems. Animals have no way of converting the energy of the sun into energy that we can use to do things like move and breathe, so we rely on photosynthesising plants for all of our nutrients. Even if you eat a lot of meat, poultry and fish, it’s important to remember that those animals only survived their first day on earth because of the nutrition they got from plants. Whether it is corn-fed chicken or grass-fed beef, we owe everything we eat to plants. Without pollinators like bees, many plants are left with no way to reproduce and, thus, no way to survive.

Petrol-powered lawnmowers are not regulated in the same way that petrol-powered vehicles are. The U.S Environmental Protection Agency (EPA) estimates that each petrol-powered lawnmower produces as much air pollution per year as 43 new automobiles being driven 12,000 miles each. If you’re thinking that this section doesn’t apply to you since you have an electric mower, it is important to remember that the electricity required to power your mower comes from a power plant that most likely used fossil fuels to generate the electricity.

If it is a choice between the two, however, electric mowers are the much greener choice. The emissions are more controlled and you do not need to use fossil fuels to transport the petrol all the way from a refinery to your back garden. In addition to this, the EPA estimate that 17 million gallons of petrol are spilled on lawns each year by Americans refuelling their lawnmowers. That is 6 million gallons more than was spilled in the infamous Exxon Valdez oil spill in 1989. Manual mowers which are powered by the elbow-grease of the user are both cheaper and better for the environment than either of the other kinds. If you are not able to push a manual mower for that long, solar-powered models are also available.

Lawn mowers are expensive. The fuel or electricity which powers them is expensive. On top of that, the actual process of cutting the grass requires time and effort and is widely considered to be a chore. A 2008 poll found that 58% of Americans surveyed said that they disliked cutting their grass. Ian Graber-Stiehl, in an article for Earther, claims that Americans spend between 47.8 and 82 billion dollars per year on lawncare and landscaping, compared to the 49.4 billion dollars they spend on foreign aid. Like smokers or alcoholics, we are paying through the nose to shoot ourselves in the foot. And for what? So that the neighbours don’t look down on us? My personal view is that if having long grass causes someone to lose respect for you, then that person’s respect is something you can do without.

For me, the important question to consider here is whether the benefits of cutting the grass outweigh the costs. I would argue that the answer to this question is a definitive no. The list of cons includes the killing of wildlife, contribution to climate change, high costs, noise pollution, air pollution and the fact that most of us hate doing it. The only real pro is that cut grass looks better, but even that is a matter of taste.

Personally, I think that a natural garden, with all its colour and movement, looks far more appealing than a still and monotonous carpet of green. It is important to point out that this is not an all-or-nothing situation. If you don’t want to abandon your mower altogether, you can still allow a neat patch of grass to grow long or mow a path to a small clearing where you can immerse yourself in the wild beauty that will surround you.

We need to change the perspective on this. We should not look down on people with long grass, quite the opposite! Those people are the ones who are helping their local environment by providing food and shelter for wildlife and cutting down on their carbon emissions in the process. In the age of anthropogenic climate change and mass extinction, the aesthetic appeal of our gardens needs to be lower on our list of priorities than helping animals to thrive.

We have brought the natural world to its knees in so many ways. The continued existence of every species on earth needs to be our top priority, not because they cannot take care of themselves, but because we are the ones who have endangered them. We have a responsibility to fix what we have broken and not only does leaving your grass to grow achieve that goal, it also saves you money and reduces greenhouse gas emissions. It is not often that you find a free way to help the environment, let alone one which will save you both money and effort. This is one of the rare win-win ways in which we can help our fellow inhabitants of earth get back on track.

The Powers that Bee: The Fight to Ban Neonics

Updated 31/08/2019

Back in February of 2018, the European Food Safety Authority (EFSA) released an updated report on the harmful effects of certain pesticides on a variety of bees. Confirming conclusions made in their 2013 report, the EFSA found a wealth of evidence supporting the claim that the world’s most popular pesticide group, neonicotinoids (or neonics for short) are harmful to both honeybees and bumblebees.

In April, following the EFSA’s findings, the EU put into place a complete ban on the use of neonics outdoors, expanding on the partial ban imposed in 2013 which prevented neonic use on certain crops. The move, which should see all European neonic use confined to greenhouses by the end of the year, was welcomed with open arms by environmental groups like Friends of the Earth and the Task Force on Systemic Pesticides. This fight, however, is far from over.

Neonics are a relatively new kind of pesticide. The use of these ‘systemic’ pesticides only dates back about 20 years. According to the UK Pesticide Action Network, “Unlike contact pesticides, which remain on the surface of the treated foliage, systemics are taken up by the plant and transported to all the tissues”. This includes the pollen and nectar which bees collect to feed their colonies. Systemic pesticides have also been found to persist in soil, water, dust and even air long after the chemicals have been sprayed. An open letter written in April and signed by 242 esteemed scientists claimed that “the balance of evidence strongly suggests that these chemicals are harming beneficial insects and contributing to the current massive loss of global biodiversity”.

The use of toxic systemic pesticides, which has steadily grown in recent years, is not just problematic for bees. The WIA (Worldwide Integrated Assessment of the Impact of Systemic Pesticides on Biodiversity and Ecosystems (in case you’re wondering)) included a report on the impact of these pesticides on vertebrate populations. The report reviewed 150 studies and concluded that neonics were both directly and indirectly affecting terrestrial and aquatic vertebrate populations. Some birds, for example, are directly affected by ingesting seeds coated in toxic neonics.  Fish, too, have been found to be vulnerable.

While the report found that the amount of chemicals in the air were non-toxic to vertebrates at present, neonics are causing sub-lethal effects like stunting growth and reproductive success. Global populations of insect-eating birds, for example, are faced with a marked decrease in the amount of prey available to them. This is an example of an indirect harm caused by neonics. This food chain effect is incredibly important to consider. Bees are the ecological backbone of a vast number of ecosystems. A study published in Science in september of 2019 shows evidence that neonics have directly harmful effects on birds also. As well as delaying migratory habits, the study found that birds dosed with the equivalent of one tenth of one imidacloprid-coated seed lost 6% of their total body weight within 6 hours of being dosed.

The knock-on effects from the decline in bee populations will increase in scope and scale until a worldwide ban on neonics and other systemic pesticides is firmly in place.This goal, however, is far from being achieved.  A 2017 report published in Science found toxic neonics in 75% of the world’s honey. Another study conducted the same year in Germany found that three quarters of flying insects have disappeared in the last 20 years, a period which coincides quite neatly with the introduction of neonics.

Multinational companies like Bayer and Syngenta, which manufacture neonics like imidacloprid and clothianidin, will fight tooth and nail to prevent ecologically responsible policy from passing into law around the world. Back in 2013, when the partial ban was proposed, Syngenta went as far as to threaten legal action against individual members of the EFSA, whose job it was to carry out an unbiased scientific evaluation of Syngenta’s products. For these business giants, profit margins are, as usual, more important than preservation of biodiversity. We must be ready for their inevitable appeals.

That being said, in May of 2019, the Environmental Protection Agency (EPA) cancelled the registration of 12 neonics, allowing companies like Bayer and Syngenta to sell off existing stocks, but not to produce more of the toxic chemicals. Surprisingly, the cancellations were voluntarily requested by companies including both Bayer and Syngenta. It becomes less surprising, however, when one knows that they only did this as part of a settlement agreement with environmental groups. The 12 neonics which these companies sacrificed were simply cannon fodder. The EPA still has nothing to say about the other 47 types of neonics.

Ever since governing bodies and NGOs have started to ban neonics, the race has been on to find a suitable replacement. One prominent candidate, however, may not be as bee-safe as its manufacturers claim. Flupyradifurone (FPF), which was approved by the EU in 2015 and has been sold under the name ‘Sivanto’ ever since, has been marketed as a harmless alternative to neonics. It is true that higher concentrations of the chemical are required to cause harmful effects in bees when considered in isolation, but when combined with common fungicides FPF has also been shown to kill bees. FPF works in much the same way as neonics, leading some experts and NGOs to say that the chemicals are so similar that it is wrong to consider them separate entities. Surprise surprise, Sivanto is manufactured by Bayer.

The EU and others, like Canada, are setting the example for other governing bodies to follow. If this problem is not addressed soon, however, we will leave future generations with a planet far less diverse and bursting with life than the one we had when neonics were first concocted. Neonics aside, humans are already the cause of the most recent of earth’s six mass extinctions. It says something about a species when they can take their place on a brief list which includes both asteroid impacts and cataclysmic volcanic eruptions.

At this point, we are in full damage control mode. Conservationists are fighting not only against pharmaceutical giants which wield more power than it should be possible to wield, but also against the clock. The public, however, have proved that this is one issue with which they can affect real change. Alongside the EFSA’s report, a driving catalyst for the EU’s ban on neonics was a petition started on the campaign platform ‘Avaaz’. The petition has received a staggering 5 million signatures. It is clear that people around the world care much more about preserving the biodiversity of this planet than they do about Bayer’s profits.

The Avaaz petition is a reminder that there are more of us than there are of them and that we can in fact stand up to them. We all know that rich bullies want to destroy this planet to fill their pockets, but we must not let them get away with it. I urge you, if you see a petition or a fundraising event for this issue, to become as involved as you possibly can. This issue is, if you’ll pardon my language, extremely fucking important.

Header image credit – Farm Futures